Algorithm: Algorithms are the “brains” of an AI system and what determines decisions in other words, algorithms are the rules for what actions the AI system takes. Machine learning algorithms can discover their own rules (see Machine learning for more) or be rule-based where human programmers give the rules.
Artificial General Intelligence (AGI): Artificial general intelligence has not yet been realized and would be when an AI system can learn, understand, and solve any problem that a human can.
Artificial Narrow Intelligence (ANI): AI can solve narrow problems and this is called artificial narrow intelligence. For example, a smartphone can use facial recognition to identify photos of an individual in the Photos app, but that same system cannot identify sounds.
Large language models (LLMs) Large language models (LLMs) Large language models form the foundation for generative AI (GenAI) systems. GenAI systems include some chatbots and tools including OpenAI’s GPTs, Meta’s LLaMA, xAI’s Grok, and Google’s PaLM and Gemini. LLMs are artificial neural networks. At a very basic level, the LLM detected statistical relationships between how likely a word is to appear following the previous word in their training. As they answer questions or write text, LLM’s use the model of the likelihood of a word occurring to predict the next word to generate. LLMs are a type of foundation model, which are pre-trained with deep learning techniques on massive data sets of text documents. Sometimes, companies include data sets of text without the creator’s consent.
Neural Networks (NN): Neural networks also called artificial neural networks (ANN) and are a subset of ML algorithms. They were inspired by the interconnections of neurons and synapses in a human brain. In a neural network, after data enter in the first layer, the data go through a hidden layer of nodes where calculations that adjust the strength of connections in the nodes are performed, and then go to an output lay.

Illustration of the topology of a generic Artificial Neural Network.
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Computer Vision: Computer Vision is a set of computational challenges concerned with teaching computers how to understand visual information, including objects, pictures, scenes, and movement (including video). Computer Vision (often thought of as an AI problem) uses techniques like machine learning to achieve this goal.
Critical AI: Critical AI is an approach to examining AI from a perspective that focuses on reflective assessment and critique as a way of understanding and challenging existing and historical structures within AI. Read more about critical AI.
Data: Data are units of information about people or objects that can be used by AI technologies.
Training Data: This is the data used to train the algorithm or machine learning model. It has been generated by humans in their work or other contexts in their past. While it sounds simple, training data is so important because the wrong data can perpetuate systemic biases. If you are training a system to help with hiring people, and you use data from existing companies, you will be training that system to hire the kind of people who are already there. Algorithms take on the biases that are already inside the data. People often think that machines are “fair and unbiased” but this can be a dangerous perspective. Machines are only as unbiased as the human who creates them and the data that trains them. (Note: we all have biases! Also, our data reflect the biases in the world.)1
Foundation Models: Foundation Models represent a large amount of data that can be used as a foundation for developing other models. For example, generative AI systems use large language foundation models. They can be a way to speed up the development of new systems, but there is controversy about using foundation models since depending on where their data comes from, there are different issues of trustworthiness and bias. Jitendra Malik, Professor of Computer Science at UC Berkeley once said the following about foundation models: “These models are really castles in the air, they have no foundation whatsoever.”
Human-centered Perspective: A human-centered perspective sees AI systems working with humans and helping to augment human skills. People should always play a leading role in education, and AI systems should not replace teachers.
Intelligence Augmentation (IA): Augmenting means making something greater; in some cases, perhaps it means making it possible to do the same task with less effort. Maybe it means letting a human (perhaps teacher) choose to not do all the redundant tasks in a classroom but automate some of them so they can do more things that only a human can do. It may mean other things. There’s a fine line between augmenting and replacing and technologies should be designed so that humans can choose what a system does and when it does it.
Intelligent Tutoring Systems (ITS): A computer system or digital learning environment that gives instant and custom feedback to students. An Intelligent Tutoring System may use rule-based AI (rules provided by a human) or use machine learning under the hood. By under the hood we mean the underlying algorithms and code that an ITS is built with. ITSs can support adaptive learning.
Adaptive Learning: Subject or course material is adjusted based on the performance of the learner. The difficulty of material, the pacing, sequence, type of help given, or other features can be adapted based on the learner’s prior responses.
Interpretable Machine Learning (IML): Interpretable machine learning, sometimes also called interpretable AI, describes the creation of models that are inherently interpretable in that they provide their own explanations for their decisions. This approach is preferable to that of explainable machine learning (see definition below) for many reasons including the fact that we should understand what is happening from the beginning in our systems, rather than try to “explain” black boxes after the fact.
Black Boxes: We call things we don’t understand, “black boxes” because what happens inside the box cannot be seen. Many machine learning algorithms are “black boxes” meaning that we don’t have an understanding of how a system is using features of the data when making their decisions (generally, we do know what features are used but not how they are used)There are currently two primary ways to pull back the curtain on the black boxes of AI algorithms: interpretable machine learning (see definition above) and explainable machine learning (see definition below).
Robots: Robots are embodied mechanical machines that are capable of doing a physical task for humans. “Bots” are typically software agents that perform tasks in a software application (e.g., in an intelligent tutoring system they may offer help). Bots are sometimes called conversational agents. Both robots and bots can contain AI, including machine learning, but do not have to have it. AI can help robots and bots perform tasks in more adaptive and complex ways.
User Experience Design/User Interface Design (UX/UI): User-experience/user-interface design refers to the overall experience users have with a product. These approaches are not limited to AI work. Product designers implement UX/UI approaches to design and understand the experiences their users have with their technologies.
Explainable Machine Learning (XML) or Explainable AI (XAI): Researchers have developed a set of processes and methods that allow humans to better understand the results and outputs of machine learning algorithms. This helps developers of AI-mediated tools understand how the systems they design work and can help them ensure that they work correctly and are meeting requirements and regulatory standards.
It is important to note that the term “explainable” in the context of explainable machine learning or explainable AI, refers to an understanding of how a model works and not to an explanation of how the model works. In theory, explainable ML/AI means that an ML/AI model will be “explained” after the algorithm makes its decision so that we can understand how the model works. This often entails using another algorithm to help explain what is happening as the “black box.” One issue with XML and XAI is that we cannot know for certain whether the explanation we are getting is correct, therefore we cannot technically trust either the explanation or the original model. Instead, researchers recommend the use of interpretable models.